REGULAR STRUCTURAL PAPERS

O54	0.496 (1)	0.210	(2)	0.820 (3)	0.07 (1)
055	0.508 (2)	0.095	(3)	1.029 (5)	0.17 (2)
056	0.573 (2)	0.073	(3)	0.838 (4)	0.13 (2)
057	0.486 (2)	0.051	(4)	0.833 (5)	0.24 (3)
	Table	e 2. Bor	nd length	ıs (Å)	
W0-01	1.	75 (2)	W503	4	1.98 (2)
W004	1.	89 (2)	W5-03	51	2.30 (2)
W005	1.	89 (2)	W6-01	9	1.73 (2)
W0-02	1.	.95 (2)	W602	23	1.80 (2)
W0-03	1.	.97 (2)	W6-03	80	1.89 (3)
W0-014	2.	26 (2)	W6-03	32	1.92 (2)
W1-06	1.	74 (2)	W602	27	1.93 (2)
W1-015	1.	.80 (2)	W6-03	31	2.29 (2)
W1-02	1.	.97 (2)	W702	24	1.76 (2)
W1010	1	.97 (2)	W7-02	20	1.77 (2)
W1013	2	.00 (2)	W7—O2	28	1.95 (2)
W1014	2	.35 (2)	W7—02	27	1.97 (2)
W207	1	.77 (2)	W7—03	33	2.02 (2)
W2-016	1	.78 (2)	W7—03	31	2.27 (3)
W2-011	1	.97 (2)	W8—O2	25	1.77 (3)
W2-O10	1	.98 (2)	W802	21	1.78 (2)
W203	2	.03 (2)	W802	28	1.94 (2)
W2-014	2	.24 (2)	W8—02	29	1.95 (3)
W3-08	1	.77 (2)	W8—O	34	2.02 (2)
W3-017	1	.78 (2)	W8O3	31	2.35 (2)
W3-011	1	.91 (2)	W9—02	26	1.71 (2)
W3-04	1	.92 (2)	W9—02	22	1.78 (2)
W3-012	2	.00 (2)	W9—0	35	1.94 (2)
W3-014	2	.28 (2)	W9—02	29	1.96 (2)
W4-09	1	.77 (2)	W9—03	30	1.98 (2)
W4-018	1	.78 (2)	W9—0	31	2.36 (3)
W4-05	1	.91 (2)	Gd-O1	.6	2.37 (2)
W4-012	1	.95 (2)	Gd—O2	21	2.39 (2)
W4013	1	.97 (2)	Gd—O1	5	2.41 (2)
W4-014	2	.35 (2)	Gd-02	22	2.42 (2)
W5036	1	.76 (2)	Gd-01	7	2.45 (2)
W5-033	1	.93 (2)	Gd02	20	2.47 (2)
W5035	1	.95 (2)	Gd—O1	8	2.47 (2)
W5-O32	1	.98 (2)	Gd—O1	9	2.49 (2)

Lists of structure factors, anisotropic thermal parameters and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71225 (31 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AS1055]

References

- Blasse, G., Dirksen, G. J. & Zonnevijlle, F. (1981). J. Inorg. Nucl. Chem. 43, 2847–2853.
- Iball, J., Low, J. N. & Weakley, T. J. R. (1974). J. Chem. Soc. Dalton Trans. pp. 2021-2024.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
- Molecular Structure Corporation. (1989). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Ozeki, T., Takahashi, M. & Yamase, T. (1992). Acta Cryst. C48, 1370– 1374.
- Ozeki, T. & Yamase, T. (1993). Acta Cryst. C49, 1574-1577.
- Rigaku Corporation (1985). RCRYSTAN. X-ray Analysis Program System. Rigaku Corporation, Tokyo, Japan.
- Stillman, M. J. & Thomson, A. J. (1976). J. Chem. Soc. Dalton Trans. pp. 285–292.
- Sugeta, M. & Yamase, T. (1993). Bull. Chem. Soc. Jpn, 66, 444-449.
- Yamase, T., Ozeki, T. & Ueda, K. (1993). Acta Cryst. C49, 1572– 1574.

©1993 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1993). C49, 1580-1584

Structure of La₅Mo₃₂O₅₄ Containing *trans* Bicapped Mo₈ Octahedral Clusters and Tricluster Mo₇-Mo₁₀-Mo₇ Chain Fragments

P. Gall, L. Toupet[†] and P. Gougeon

Université de Rennes I, Laboratoire de Chimie du Solide et Inorganique Moléculaire, URA CNRS nº 1495, Avenue du Général Leclerc, 35042 Rennes CEDEX, France

(Received 26 October 1992; accepted 10 February 1993)

Abstract

The crystal structure of $La_5Mo_{32}O_{54}$ contains the new *trans*-face bicapped Mo₈ cluster and a novel Mo₂₄ tricluster chain fragment composed of one Mo₁₀ and two Mo₇ clusters. The Mo₈ and Mo₂₄ clusters are connected by bridging O atoms and are arranged in layers parallel to the *ac* plane. The three crystallographically distinct La^{3+} ions have coordination numbers of 11 or 12 with an environment in each case based on a distorted cubo-octahedron.

Comment

The present work constitutes part of our program in search of new reduced molybdenum oxides in combination with the rare-earth elements. Up to now, this study has led to the synthesis of six new structure types by solid-state reaction: La₄Mo₂O₁₁ (Gall & Gougeon, 1992) including isolated Mo₂ dimers, RMo_8O_{14} (R = La, Ce, Pr, Nd, Sm) (Leligny, Ledesert, Labbe, Raveau & McCarroll, 1990; Gougeon & McCarley, 1991) comprising Mo₈ clusters, $R_{16}Mo_{21}O_{56}$ (R = La, Ce, Pr, Nd) (Gall & Gougeon, 1993) showing isolated Mo₁₀ clusters, RMo_5O_8 (R = La, Ce, Pr, Nd, Sm, Eu, Gd) (Hibble, Cheetham, Bogle, Wakerley & Cox, 1988; Gougeon, Gall & Sergent, 1991; Gall, 1990) containing chains of bioctahedral Mo_{10} clusters, $R_4Mo_4O_{11}$ (R = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) (Gougeon, Gall & McCarley, 1991a) characterized by infinite chains of trans-edge-shared Mo₆ octahedra, and $R_4 Mo_{18}O_{32}$ (R = Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) (Gougeon, Gall & McCarley, 1991b) which contains three kinds of infinite Mo chains, i.e. linear chains with alternate short and long Mo-Mo distances, chains of transedge-shared rhomboidal Mo₄ clusters and chains of trans-edge-shared octahedral Mo₆ clusters. We

† Groupe Matière Condensée et Matériaux, URA CNRS n° 804, Rennes, France.

Acta Crystallographica Section C ISSN 0108-2701 ©1993 present here the crystal structure of $La_5Mo_{32}O_{54}$ characterized by two novel Mo cluster types.

The basic building blocks of La₅Mo₃₂O₅₄ are the new Mo₈ cluster and the novel Mo₂₄ tricluster chain fragment, shown in Fig. 1 with their oxygen environments. These cluster units also share some of their O atoms so that the clusters are arranged in layers parallel to the *ac* plane (Fig. 2). The La^{3+} ions occupy voids in these layers between the Mo clusters. The centrosymmetrical Mo₈ cluster is formed by capping two opposite faces of an Mo₆ octahedron. It constitutes the second example of the Mo₈-type cluster found in reduced molybdenum oxides. Indeed, the first example, which corresponds to the cis-edge-shared form, has recently been observed in the series RMo_8O_{14} (R = La, Ce, Pr, Nd, Sm) (Leligny et al., 1990; Gougeon & McCarley, 1991). The Mo-Mo distances within the trans-bicapped Mo_8 cluster range from 2.5728 (9) to 2.7777 (8) Å. The average value is 2.705 Å and is slightly shorter than that observed for the cis-edge-shared Mo₈ cluster occurring in $NdMo_8O_{14}$ (2.731 Å). With the exception of the two capping Mo atoms, which are surrounded by six O atoms forming a distorted octahedron, the other Mo atoms are bonded to five O atoms in an approximately square-pyramidal symmetry. The Mo-O distances range from 2.019 (5) to 2.148 (5) Å with an average of 2.069 Å (2.050 Å for the *cis*-edge-shared form).

The second novel feature of the title compound is the occurrence of the unexpected chain-like $Mo_{24}O_{60}$ cluster unit. Its Mo core consists of one Mo_{10} and two Mo₇ clusters strongly linked through an Mo—Mo bond of 2.7688 (9) Å [Mo(11)—Mo(12)] and four weaker bonds of 2.9916 (9) [Mo(10)-Mo(12)], 3.0053 (9) [Mo(9)-Mo(12)], 3.0373 (9) [Mo(11) - Mo(13)] and 3.0637 (9) Å [Mo(11) - Mo(13)]Mo(14)] according to the sequence $Mo_7 - Mo_{10} - Mo_7$. This intercluster linkage is identical to that encountered between the Mo_6 clusters in $BaMo_6O_{10}$ (Lii, Wang & Wang, 1988) and between the Mo_{10} clusters in MMo_5O_8 . The Mo_7 cluster is new to reduced molybdenum oxides and is formed by capping one face of a distorted octahedron. In the chain fragment, the two Mo₇ clusters are related through an inversion point which lies at the center of the Mo_{10} cluster. The latter is similar to that previously found in the Ce₁₆Mo₂₁O₅₆ (Gall & Gougeon, 1993) and MMo₅O₈ compounds and consists of two distorted Mo₆ octahedra sharing an edge. Within the Mo₇ cluster, the Mo-Mo distances lie between 2.5561 (9) and 2.7925 (8) Å with the average value of 2.710 Å close to that found for the Mo₈ cluster. As in the latter cluster, the capping Mo atom of the Mo_7 cluster is surrounded by six O atoms forming a distorted octahedron and the remaining six Mo atoms are surrounded by five O atoms in an approxi-

Fig. 1. (a) The trans bi-face Mo_8 cluster, and (b), the tricluster $Mo_7-Mo_{10}-Mo_7$ chain fragment with their oxygen environments. An inversion center lies at the center of the Mo_8 cluster and at the middle of the Mo(16)—Mo(16) bonds in the tricluster chain fragment.

Fig. 2. The arrangement of the Mo_8 clusters and tricluster Mo_7 - Mo_{10} - Mo_7 chain fragments within the unit cell.

mately square-pyramidal geometry. The Mo–O bond lengths vary from 1.957 (5) to 2.140 (5) Å (average 2.059 Å). Within the Mo₁₀ cluster, the Mo–Mo distances range from 2.5879 (9) to 2.838 (1) Å, slightly longer than in Ce₁₆Mo₂₁O₅₆ and MMo_5O_8 (*ca* 2.60 2.83 Å). The average Mo–Mo distance of 2.740 Å is similar to that calculated for the MMo_5O_8 compounds containing divalent cations [2.736 Å in CaMo₅O₈, 2.742 Å in SrMo₅O₈ and 2.740 Å in EuMo₅O₈ (Gall, 1990)]. The Mo–O distances spread over a wide range, 1.919 (5)-2.160 (5) Å, with an average value of 2.064 Å which also corresponds to that found in the MMo_5O_8 compounds where $M = Ca^{2+}$ (2.064 Å), Sr^{2+} (2.064 Å) and Eu^{2+} (2.063 Å) (Gall, 1990). The shortest Mo-Mo intercluster distance is 3.1317 (9) Å and occurs between the Mo₈ clusters and the chain-like Mo_{7} - Mo_{10} - Mo_{7} clusters belonging to the same layer. On the other hand, the spacing between clusters of adjacent layers is as long as 3.580 (1) Å. Consequently, although the structure is three-dimensional overall, it can be considered to be two-dimensional with respect to the Mo network.

The La(1) and La(2) cations are each bonded to 12 O atoms forming a distorted cubo-octahedron. However, the distortion is less pronounced for the La(1) site, located around an inversion center, than for the La(2) site on a general position. For these two sites, the La(1)—O and La(2)—O distances range from 2.572 (5) to 2.748 (5) Å and from 2.477 (5) to 3.206 (5) Å, respectively. La(3) is surrounded by 11 O atoms at distances from 2.405 (5) to 3.142 (5) Å. Its environment can be viewed as a highly distorted cubo-octahedron with one vertex removed.

By using the bond-length-bond-strength formula (Brown & Wu, 1976) for the Mo-O bonds $[s = (d_{Mo-O}/1.882)^{-6.0}]$, the valence of each independent Mo atom was determined as follows: Mo(1) +3.25, Mo(2) +2.90, Mo(3) +2.94, Mo(4) +2.89, Mo(5) + 3.38, Mo(6) + 2.91, Mo(7) + 3.16, Mo(8)+2.92, Mo(9) +3.16, Mo(10) +2.96, Mo(11) +2.70, Mo(12) +2.68, Mo(13) +3.24, Mo(14) +2.88, Mo(15) +2.83 and Mo(16) +2.38. From these values, we can deduce an average Mo oxidation state of +2.99 for the Mo₈ cluster and +3.03 and +2.80 for the Mo₇ and Mo₁₀ clusters, respectively $(+2.94 \text{ for the Mo}_{24} \text{ chain fragment})$. The calculated valence of molybdenum in $La_5Mo_{32}O_{54}$ is +2.95 which is in good agreement with that based on the stoichiometry, +2.91. A similar calculation for the La ions $[s = (d_{La-O}/2.167)^{-6.5}]$ leads to +2.95, +2.85 and +2.90 for La(1), La(2) and La(3), respectively. These values are consistent with the expected value of +3 as well as with those observed in other reduced molybdenum oxides containing La^{3+} ions $[+2.90 \text{ in } \text{LaMo}_{7.7}O_{14} \text{ (Leligny et al., 1990), } +2.89$ in La₂Mo₂O₇ (Moini, Subramanian, Clearfield, Di Salvo & McCarroll, 1987) and +2.89 in LaMo₅O₈ (Gall, 1990)].

Isostructural compounds are also formed with Ce, Pr and Nd as the ternary element.

Experimental Crystal data La5M032O54 Mo $K\alpha$ radiation $M_r = 4628.60$ $\lambda = 0.71073 \text{ Å}$

Monoclinic $P2_1/c$ a = 10.176 (1) Å*b* = 9.1471 (5) Å c = 22.910(3) Å $\beta = 105.14 (7)^{\circ}$ V = 2058.6 (4) Å³ Z = 2 $D_{\rm r} = 7.467 {\rm Mg m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer ω -2 θ scans Absorption correction: empirical $T_{\min} = 0.9093, T_{\max} =$ 1.1609 6637 measured reflections 5465 independent reflections

Refinement

 $\Delta \rho_{\rm max}$ = 1.43 e Å⁻³ Refinement on F $\Delta \rho_{\rm min} = -0.59 \ {\rm e} \ {\rm \AA}^{-3}$ Final R = 0.028Extinction correction: Stout wR = 0.040& Jensen (1968) S = 1.260Extinction coefficient: 4316 reflections 2.6 (1) $\times 10^{-8}$ 278 parameters Atomic scattering factors $w = 4F_o^2/[\sigma^2(F_o^2)]$ from International Tables $+ (0.04F_o^2)^2$ for X-ray Crystallography $(\Delta/\sigma)_{\rm max} < 0.01$ (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters ($Å^2$)

$B_{\rm eq} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i . \mathbf{a}_j.$

	x	у	z	Bea
La(1)	0.000	0.000	0.500	0.429 (9)
La(2)	0.23563 (4)	0.99573 (5)	0.20684 (2)	0.551 (7)
La(3)	0.47747 (4)	0.00421 (5)	0.08013 (2)	0.457 (7)
Mo(1)	0.84545 (6)	0.12041 (7)	0.09661 (3)	0.230 (9)
Mo(2)	0.91273 (6)	0.61754 (7)	0.55194 (3)	0.20 (1)
Mo(3)	0.07866 (6)	0.12426 (7)	0.06822 (3)	0.200 (9)
Mo(4)	0.15784 (6)	0.87818 (7)	0.02131 (3)	0.215 (9)
Mo(5)	0.93556 (6)	0.87715 (7)	0.67717 (3)	0.221 (9)
Mo(6)	0.15687 (6)	0.87692 (7)	0.76698 (7)	0.211 (9)
Mo(7)	0.31909 (6)	0.12015 (7)	0.78766 (3)	0.21 (1)
Mo(8)	0.91969 (6)	0.87855 (7)	0.30322 (3)	0.22 (1)
Mo(9)	0.40510(6)	0.87814 (7)	0.74164 (3)	0.210 (9)
Mo(10)	0.83671 (6)	0.12185 (7)	0.35039 (3)	0.193 (9)
Mo(11)	0.66710(6)	0.88513 (7)	0.32978 (3)	0.198 (9)
Mo(12)	0.42476 (6)	0.88458 (7)	0.61304 (3)	0.197 (9)
Mo(13)	0.59461 (6)	0.11286 (7)	0.62998 (3)	0.197 (9)
Mo(14)	0.34696 (6)	0.12760 (7)	0.53835 (3)	0.191 (9)
Mo(15)	0.34008 (6)	0.13345 (7)	0.42466 (3)	0.216 (9)
Mo(16)	0.41420 (6)	0.87524 (7)	0.49081 (3)	0.203 (9)
O(1)	0.3337 (5)	0.7562 (6)	0.9173 (2)	0.35 (7)
O(2)	0.2512 (5)	0.9965 (6)	0.8447 (2)	0.57 (8)
O(3)	0.0813 (5)	0.7601 (6)	0.8263 (2)	0.37 (7)
O(4)	0.8335 (5)	0.7480 (6)	0.1038 (2)	0.25 (7)
O(5)	0.0170 (5)	0.9936 (6)	0.1277 (2)	0.41 (7)
O(6)	0.1736 (5)	0.2595 (6)	0.6488 (2)	0.35 (7)
O(7)	0.2715 (5)	0.4989 (6)	0.4757 (2)	0.40 (7)
O(8)	0.0783 (5)	0.7686 (6)	0.4548 (2)	0.44 (8)
O(9)	0.9234 (5)	0.2607 (6)	0.9286 (2)	0.27 (7)

Cell parameters from 25 reflections $\theta = 9 - 30^{\circ}$ $\mu = 14.37 \text{ mm}^{-1}$ T = 295 KIrregular $0.16 \times 0.12 \times 0.12$ mm Black

4316 observed reflections $[I > 2\sigma(I)]$ $R_{\rm int} = 0.053$ $\theta_{\rm max} = 30^{\circ}$ $h = 0 \rightarrow 14$ $k = 0 \rightarrow 12$ $l = -31 \rightarrow 31$ 3 standard reflections frequency: 90 min intensity variation: -0.1%

1582

REGULAR STRUCTURAL PAPERS

O(10)	0.2535 (5)	0.4986 (6)	0.5965 (2)	0.44 (7)
O(11)	0.8336 (5)	0.7405 (6)	0.9816 (2)	0.49 (8)
O(12)	0.3404 (5)	0.7414 (6)	0.5458 (2)	0.31 (7)
O(13)	0.2471 (5)	0.0098 (6)	0.3479 (2)	0.28 (7)
O(14)	0.8349 (5)	0.7396 (6)	0.2311 (2)	0.52 (8)
O(15)	0.0952 (5)	0.7705 (6)	0.1992 (2)	0.27 (7)
O(16)	0.9977 (5)	0.9913 (6)	0.3824 (2)	0.46 (7)
O(17)	0.0132 (5)	0.9914 (6)	0.2477 (2)	0.27 (7)
O(18)	0.3374 (5)	0.7509 (6)	0.1685 (2)	0.44 (8)
O(19)	0.3256 (5)	0.7384 (6)	0.7886 (2)	0.41 (8)
O(20)	0.4112 (5)	0.2471 (6)	0.2395 (2)	0.43 (7)
O(21)	0.5218 (5)	0.9987 (6)	0.6946 (2)	0.37 (7)
O(22)	0.4951 (5)	-0.0002 (6)	0.8108 (2)	0.45 (7)
O(23)	0.7586 (5)	0.9964 (6)	0.4114 (2)	0.41 (7)
O(24)	0.5726 (5)	0.7457 (6)	0.8831 (2)	0.46 (7)
O(25)	0.5812 (5)	0.7633 (6)	0.1320 (3)	0.38 (7)
O(26)	0.2401 (5)	0.9979 (6)	0.4706 (2)	0.32 (7)
O(27)	0.5661 (5)	0.7816 (6)	0.0055 (2)	0.38 (8)

Table 2. Selected bond distances (Å)

Mo ₈ cluster			
Mo(1)-Mo(2)	2.5728 (9)	Mo(2)—O(4)	2.019 (5)
Mo(1)-Mo(3)	2.6196 (9)	Mo(2)O(5)	2.051 (5)
Mo(1)Mo(4)	2.6930 (9)	Mo(2)O(11)	2.063 (5)
Mo(1)-Mo(6)	3.1317 (9)†	Mo(2)—O(9)	2.075 (5)
Mo(2)Mo(4)	2.7380 (9)	Mo(2)O(7)	2.105 (5)
Mo(2)-Mo(3)	2.7484 (9)	Mo(3)—O(5)	2.031 (5)
Mo(2) - Mo(4)	2.7621 (8)	Mo(3)-O(8)	2.033 (5)
Mo(2)-Mo(3)	2,7777 (8)	Mo(3)-O(11)	2.039 (5)
$M_0(3) - M_0(4)$	2,7061 (9)	Mo(3)-O(10)	2.060 (5)
Mo(3) - Mo(4)	2.7243 (9)	$M_0(3) = O(6)$	2.131 (5)
$M_0(1) = O(3)$	2.045 (5)	Mo(4)-O(9)	2.027 (5)
$M_0(1) = O(5)$	2.061 (5)	$M_{0}(4) - O(8)$	2.033 (5)
$M_0(1) - O(8)$	2.075 (5)	$M_0(4) - O(10)$	2.076 (5)
$M_0(1) = O(7)$	2.089 (5)	$M_{0}(4) - O(7)$	2.080 (5)
$M_0(1) - O(1)$	2.007 (5)	$M_0(4) - O(12)$	2.101 (5)
Mo(1)O(2)	2.148 (5)		
Mo24 tricluster			
(a) Mo ₇ subcluster			
Mo(5)Mo(10)	2.5561 (9)	Mo(6)O(17)	2.062 (5)
Mo(5)Mo(6)	2.6240 (8)	Mo(6)-O(19)	2.087 (5)
Mo(5)-Mo(8)	2.6494 (9)	Mo(6)-O(2)	2.096 (5)
Mo(5)Mo(15)	3.1468 (9)‡	Mo(7)—O(2)	1.983 (5)
Mo(6)-Mo(10)	2.7068 (9)	Mo(7)-O(14)	1.984 (5)
Mo(6)Mo(9)	2.7357 (9)	Mo(7)—O(20)	2.027 (5)
Mo(6)-Mo(7)	2.7369 (9)	Mo(7)—O(22)	2.050 (5)
Mo(6)-Mo(8)	2.7463 (9)	Mo(7)—O(25)	2.140 (5)
Mo(7)Mo(9)	2.6945 (9)	Mo(8)O(3)	2.034 (5)
Mo(7)-Mo(11)	2.7313 (9)	Mo(8)—O(17)	2.055 (5)
Mo(7)-Mo(8)	2.7564 (9)	Mo(8)O(16)	2.058 (5)
Mo(8)-Mo(10)	2.7037 (9)	Mo(8)O(6)	2.061 (5)
Mo(8)-Mo(11)	2.7925 (8)	Mo(8)O(14)	2.084 (5)
Mo(9)-Mo(11)	2.6978 (9)	Mo(9)-O(22)	1.957 (5)
Mo(9)-Mo(10)	2.7913 (9)	Mo(9)—O(19)	1.975 (5)
Mo(9)-Mo(12)	3.0053 (9)§	Mo(9)-O(18)	2.017 (5)
Mo(10)-Mo(11)	2.7322 (9)	Mo(9)O(21)	2.111 (5)
Mo(10)-Mo(12)	2.9916 (9)§	Mo(9)O(20)	2.139 (5)
Mo(11)-Mo(12)	2.7688 (9)§	Mo(10)O(16)	2.005 (5)
Mo(11)-Mo(13)	3.0373 (9)§	Mo(10)O(15)	2.007 (5)
Mo(11)-Mo(14)	3.0637 (9)§	Mo(10)O(18)	2.078 (5)
Mo(5)-O(17)	2.053 (5)	Mo(10)O(9)	2.079 (5)
Mo(5)O(16)	2.063 (5)	Mo(10)O(23)	2.117 (5)
Mo(5)-O(15)	2.071 (5)	Mo(11)O(20)	2.022 (5)
Mo(5)-O(4)	2.073 (5)	Mo(11)-O(6)	2.051 (5)
Mo(5)-O(13)	2.073 (5)	Mo(11)O(24)	2.112 (5)
Mo(5)O(14)	2.092 (5)	Mo(11)O(23)	2.119 (5)
Mo(6)-O(15)	2.029 (5)	Mo(11)-O(21)	2.139 (5)
Mo(6)-O(3)	2.031 (5)		
(b) Mo ₁₀ subcluste	r		
Mo(12)-Mo(13)	2.6736 (9)	Mo(13)O(1)	1.958 (5)
Mo(12)-Mo(15)	2.7531 (8)	Mo(13)O(24)	2.048 (5)
Mo(12)-Mo(16)	2.7755 (9)	Mo(13)-O(21)	2.098 (5)
Mo(12)-Mo(14)	2.7908 (9)	Mo(13)-O(19)	2.160 (5)
Mo(13)-Mo(15)	2.7421 (9)	Mo(14)O(26)	2.029 (5)

Mo(13)—Mo(16)	2.7474 (9)	Mo(14)—O(11)	2.053 (5)
Mo(13)-Mo(14)	2.8308 (8)	Mo(14)-O(27)	2.060 (5)
Mo(14)-Mo(15)	2.5879 (9)	Mo(14)O(24)	2.075 (5)
Mo(14)-Mo(16)	2.6839 (9)	Mo(14)-O(23)	2.100 (5)
Mo(14)-Mo(16)	2.7152 (9)	Mo(15)O(4)	2.011 (5)
Mo(15)-Mo(16)	2.7351 (9)	Mo(15)-O(26)	2.059 (5)
Mo(15)-Mo(16)	2.8013 (9)	Mo(15)-O(25)	2.069 (5)
Mo(16)-Mo(16)	2.838 (1)	Mo(15)O(13)	2.097 (5)
Mo(12)O(12)	2.034 (5)	Mo(15)O(27)	2.124 (5)
Mo(12)-O(25)	2.047 (5)	Mo(16)O(12)	2.036 (5)
Mo(12)O(23)	2.106 (5)	Mo(16)O(26)	2.045 (5)
Mo(12)-O(18)	2.129 (5)	Mo(16)O(1)	2.058 (5)
Mo(12)-O(21)	2.142 (5)	Mo(16)O(27)	2.071 (5)
Mo(13)—O(13)	1.919 (5)		
La environments			
$La(1) - O(8) (\times 2)$	2.572 (5)	La(2)O(21)	2.879 (5)
$La(1) - O(16) (\times 2)$	2.689 (5)	La(2)-O(20)	2.888 (5)
$La(1) - O(26) (\times 2)$	2.699 (5)	La(2)-O(13)	3.206 (5)
$La(1) - O(9) (\times 2)$	2.721 (5)	La(3)-O(10)	2.405 (5)
$La(1) - O(11) (\times 2)$	2.741 (5)	La(3)-O(22)	2.441 (5)
$La(1) - O(23) (\times 2)$	2.748 (5)	La(3)O(24)	2.536 (5)
La(2)—O(5)	2.477 (5)	La(3)-O(25)	2,593 (5)
La(2)—O(15)	2.487 (5)	La(3)-O(12)	2.653 (5)
La(2)O(10)	2.582 (5)	La(3)-O(27)	2.726 (5)
La(2)—O(6)	2.596 (5)	La(3)—O(7)	2.738 (5)
La(2)—O(17)	2.666 (5)	La(3)O(2)	2.847 (5)
La(2)—O(18)	2.708 (5)	La(3)—O(1)	2.905 (5)
La(2)—O(19)	2.835 (5)	La(3)-O(27)	2.947 (5)
La(2)O(14)	2.837 (5)	La(3)O(7)	3.142 (5)
La(2)O(22)	2.873 (5)		

[†] Between the Mo₈ cluster and the Mo₁₀ subcluster.

[‡] Between the Mo₇ and Mo₁₀ subclusters of different triclusters. § Between the Mo₇ and Mo₁₀ subclusters of the same tricluster.

Single crystals were obtained by heating a mixture of overall composition 'La6MO31.5O62.5' (starting materials: La2O3, MOO3 and Mo) in a sealed molybdenum crucible at about 2273 K for 5 min. The crucible was then cooled at a rate of 100 K h^{-1} to 1300 K and finally furnace cooled to room temperature.

Data were corrected for Lorentz-polarization effects and an empirical absorption correction (DIFABS; Walker & Stuart, 1983) was applied to isotropically refined data. The structure was solved with the aid of MULTAN11/82 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982) and subsequent difference Fourier syntheses. A refinement of the occupancy factors for the La sites confirmed that they are fully occupied. All calculations were performed with the MolEN (Fair, 1989) programs on a Digital MicroVAX 3100.

Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71087 (31 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: DU1032]

References

Brown, I. D. & Wu, K. K. (1976). Acta Cryst. B32, 1957-1959.

- Fair, C. K. (1989). MolEN User's Manual. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Gall, P. (1990). Report of D. E. A. Univ. of Rennes.
- Gall, P. & Gougeon, P. (1992). Acta Cryst. C48, 1915-1917.
- Gall, P. & Gougeon, P. (1993). Acta Cryst. C49, 659-663.
- Gougeon, P., Gall, P. & McCarley, R. E. (1991a). Acta Cryst.
- C47, 1585-1588.
- Gougeon, P., Gall, P. & McCarley, R. E. (1991b). Acta Cryst. C47, 2026-2029.

Gougeon, P., Gall, P. & Sergent, M. (1991). Acta Cryst. C47, 421-423.

- Gougeon, P. & McCarley, R. E. (1991). Acta Cryst. C47, 241–244. Hibble, S. J., Cheetham, A. K., Bogle, A. R. L., Wakerley, H. R.
- & Cox, D. E. (1988). J. Am. Chem. Soc. 110, 3295–3296. Leligny, H., Ledesert, M., Labbe, Ph., Raveau, B. & McCarroll,
- W. H. (1990). J. Solid State Chem. 87, 35–43.
- Lii, K. H., Wang, C. C. & Wang, S. L. (1988). J. Solid State Chem. 77, 407-411.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Moini, A., Subramanian, M. A., Clearfield, A., Di Salvo, F. J. & McCarroll, W. H. (1987). J. Solid State Chem. 66, 136-143.
- Stout, G. & Jensen, L. H. (1968). X-ray Structure Determination. London: MacMillan.
- WALKER, N. & STUART, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1993). C49, 1584-1585

Structure of UOSe

MICHAEL F. MANSUETTO, STÉPHANE JOBIC, HUEY P. NG AND JAMES A. IBERS*

Department of Chemistry, Northwestern University, Evanston, IL 60208-3113, USA

(Received 12 January 1993; accepted 5 March 1993)

Abstract

The structure of UOSe, uranium oxyselenide, has been determined from a single crystal at 113 K. UOSe is isostructural with UOS and is of the PbFCl structure type. The structure contains a nine-coordinate U atom bonded to five Se atoms and four O atoms in a distorted tricapped trigonal prismatic arrangement. The U—Se distances are 3.012 (5) and 3.080 (5) Å; the U—O distance is 2.346 (4) Å.

Comment

A single crystal of UOSe was discovered in the reaction products of a combination of K_2 Se, Cu, U and Se. In an attempt to explore further the synthesis of quaternary chalcogenides that are related to the recently reported series of compounds KCuZrQ₃ (Mansuetto, Keane & Ibers, 1992) and NaCuMQ₃ (Mansuetto, Keane & Ibers, 1993) K_2 Se, Cu, U, and Se were combined in a molar ratio of 1:1:1:3. The mixture was loaded into a quartz tube under an argon atmosphere and evacuated to approximately

 10^{-4} Torr (1 Torr = 133.322 Pa) and then sealed. The tube was heated in a furnace from room temperature to 1223 K over 7 h and held there for 1 week before being cooled back to room temperature at 4 K h⁻¹. A flat needle of UOSe was extracted from the melt by washing away the excess flux with water. The oxygen is presumed to have come from the quartz.

The structure of UOSe was first determined from powder data (Ferro, 1954) and found to be isostructural with UOS (Zachariasen, 1949). In the present work, this structure of UOSe has been confirmed and refined from data collected from a single crystal at 113 K. The structure is of the PbFCl type (Nieuwenkamp & Bijvoet, 1932) and comprises a nine-coordinate U atom in a distorted tricapped trigonal prism of five Se atoms and four O atoms. A view down the *b* axis is given in Fig. 1. The U—Se distances are comparable to those found in α -USe₂ [2.880-3.133 Å (Beck & Dausch, 1989)] and U₃Se₅ [2.80-3.18 Å (Moseley, Brown & Whittaker, 1972)], while the U—O distance agrees with that of 2.363 Å in UO₂ (Rundle, Baenziger, Wilson & McDonald, 1948).

Fig. 1. View of UOSe down [010] with atoms labeled.

Experimental

Crystal data UOSe $M_r = 332.99$ Tetragonal P4/nmm a = 3.885 (4) Å c = 6.947 (4) Å $V = 104.9 (2) Å^3$ Z = 2 $D_x = 10.547 \text{ Mg m}^{-3}$

Data collection Picker diffractometer θ -2 θ scans Mo $K\alpha$ radiation $\lambda = 0.7093$ Å Cell parameters from 21 reflections $\theta = 7.43-17.80^{\circ}$ $\mu = 94.31 \text{ mm}^{-1}$ T = 113 KFlat needle $0.372 \times 0.048 \times 0.002 \text{ mm}$ Black

 $R_{\rm int} = 0.0644$ $\theta_{\rm max} = 30.07^{\circ}$

Acta Crystallographica Section C ISSN 0108-2701 © 1993